

Hot Fuel-Gas Sorbent System

Ambal Jayaraman, Gökhan Alptekin

TDA Research Inc. Wheat Ridge, CO – 80033.

U.S. EPA SBIR Phase I Kick-Off Meeting

April 5–6, 2007

Introduction

Introduction

- ➤ U.S. has 25% of world's coal reserves.
- ➤ Coal accounts for nearly 56% of U.S. electric power generation.

Electricity generation from coal is going to play an increasingly important role in solving the Nation's future energy needs.

Pollution from Coal Based Power Plants

Coal based power plants contribute approximately

- $\geq 2/3^{\rm rd}$ of the country's sulfur dioxide (SO₂) emissions.
- \geq 1/5th of the nitrogen oxides (NOx) emissions,
- > over 1/3rd of the mercury emissions and
- ➤ 36% of U.S. carbon dioxide (CO₂) emissions.

CO, Emissions

CO₂ is a major greenhouse gas and plays a significant role in global climate change.

Source: Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center, http://cd/ac.esd.oml.gov/.

TDA's Approach

Integrated Gasification Combined Cycle (IGCC)

- > IGCC is an Advanced power generation cycle
- ➤ Likely to replace conventional pulverized-coal combustion plants in new construction
- ➤ Has higher efficiency and lower emissions.

CO2 Capture for IGCC power plants

- > Future regulations may require the minimization or elimination of carbon dioxide emissions
- ➤ After combustion in gas turbine the flue gas is diluted by 10:1 and is at low-pressure
- > CO₂ should be captured early in the IGCC process (before the turbine) where it is concentrated and at high pressure

TDA's CO2 Removal System Integrated with IGCC

- \succ CO₂ removal is completed after the desulfurization system removes the H₂S and the water gas shift process removes CO and increases the CO₂ and H₂ content in the fuel gas.
- ➤ Most advanced (hot gas and warm gas) processes for removing sulfur require that the gases be cooled to 500-700°C before the sulfur is removed.
- ➤ The particulates are removed by either scrubbing (225-270°C) or hot gas filtration using ceramic or sintered metal filter candles (at temperatures up to 500°C).
- ➤ Therefore we are developing a sorbent capable of removing CO₂ at high temperatures (400-500°C).
- This temperature range also allows us to use stainless steel for our reactor housing and minimizes any cooling and heating requirements.

TDA's CO₂ Capture Sorbent System

Schematic of TDA's Hot Fuel Gas Sorbent System for CO₂ Capture in an IGCC Power Plant

Potential Benefits

Environmental Benefits

- > Substantially reduces green house gas emissions.
- ➤ Serves to minimize CO₂ emissions by capturing almost 95% of the CO₂ generated compared to 80-90% capture for a low temperature system.
- > CO₂ is removed at high temperature, allowing work recovery from the hot CO₂ gas.
- ➤ TDA's high temperature CO₂ removal system increases the amount of fuel needed to generate a kWh of electricity by only 8%, while conventional systems increase the heat rate by 24%.
- ➤ Better economics for CO₂ capture in IGCC systems and would hasten the use of CO₂ capture in new power plants

Benefits to the Industrial Hydrogen Manufacturing

- ➤ The use of TDA's CO₂ removal sorbent in combination with the Water-Gas Shift (WGS) catalyst will remove the Equilibrium Limit due to constant absorption of CO₂ as it is formed.
- > It would allow operation of WGS reactor at higher temperatures, which will improve the catalytic performance and per pass conversion.
- ➤TDA's sorbent-based process can combine at least three unit operations, high temperature WGS, low temperature WGS and CO₂ removal into a single step, eliminating the energy-intensive amine separation, while producing high purity hydrogen.

This research is funded by USEPA SBIR Program, Contract # $\underline{\text{EP-D-07-042}}$